Copied to
clipboard

G = C3×C22.29C24order 192 = 26·3

Direct product of C3 and C22.29C24

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C22.29C24, C6.1522+ 1+4, (C2×C12)⋊26D4, C4⋊D46C6, C41D47C6, C429(C2×C6), C4.16(C6×D4), C22≀C25C6, C4.4D46C6, (C4×C12)⋊40C22, C12.323(C2×D4), (C22×D4)⋊10C6, (C6×D4)⋊36C22, C24.17(C2×C6), (C6×Q8)⋊51C22, C22.21(C6×D4), C42⋊C210C6, (C2×C6).355C24, C6.190(C22×D4), C23.9(C22×C6), (C2×C12).664C23, (C22×C12)⋊48C22, C22.29(C23×C6), (C23×C6).16C22, (C22×C6).91C23, C2.4(C3×2+ 1+4), (D4×C2×C6)⋊22C2, (C2×C4)⋊4(C3×D4), C2.14(D4×C2×C6), C4⋊C414(C2×C6), (C2×C4○D4)⋊8C6, (C2×D4)⋊4(C2×C6), (C6×C4○D4)⋊20C2, C22⋊C44(C2×C6), (C22×C4)⋊9(C2×C6), (C2×Q8)⋊13(C2×C6), (C3×C4⋊D4)⋊33C2, (C3×C41D4)⋊16C2, (C3×C4⋊C4)⋊70C22, (C2×C6).417(C2×D4), (C3×C22≀C2)⋊13C2, (C3×C4.4D4)⋊26C2, (C2×C4).22(C22×C6), (C3×C42⋊C2)⋊31C2, (C3×C22⋊C4)⋊39C22, SmallGroup(192,1424)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C22.29C24
C1C2C22C2×C6C22×C6C6×D4C3×C41D4 — C3×C22.29C24
C1C22 — C3×C22.29C24
C1C2×C6 — C3×C22.29C24

Generators and relations for C3×C22.29C24
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=f2=g2=1, e2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 610 in 334 conjugacy classes, 162 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C22×C6, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C6×D4, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C23×C6, C22.29C24, C3×C42⋊C2, C3×C22≀C2, C3×C4⋊D4, C3×C4.4D4, C3×C41D4, D4×C2×C6, C6×C4○D4, C3×C22.29C24
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C24, C3×D4, C22×C6, C22×D4, 2+ 1+4, C6×D4, C23×C6, C22.29C24, D4×C2×C6, C3×2+ 1+4, C3×C22.29C24

Smallest permutation representation of C3×C22.29C24
On 48 points
Generators in S48
(1 7 19)(2 8 20)(3 5 17)(4 6 18)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 46 36)(14 47 33)(15 48 34)(16 45 35)(29 40 42)(30 37 43)(31 38 44)(32 39 41)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 11)(2 12)(3 9)(4 10)(5 27)(6 28)(7 25)(8 26)(13 31)(14 32)(15 29)(16 30)(17 21)(18 22)(19 23)(20 24)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 43)(2 42)(3 41)(4 44)(5 32)(6 31)(7 30)(8 29)(9 33)(10 36)(11 35)(12 34)(13 28)(14 27)(15 26)(16 25)(17 39)(18 38)(19 37)(20 40)(21 47)(22 46)(23 45)(24 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(2 4)(6 8)(10 12)(13 29)(14 32)(15 31)(16 30)(18 20)(22 24)(26 28)(33 41)(34 44)(35 43)(36 42)(37 45)(38 48)(39 47)(40 46)
(1 11)(2 12)(3 9)(4 10)(5 27)(6 28)(7 25)(8 26)(13 29)(14 30)(15 31)(16 32)(17 21)(18 22)(19 23)(20 24)(33 43)(34 44)(35 41)(36 42)(37 47)(38 48)(39 45)(40 46)

G:=sub<Sym(48)| (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,42)(30,37,43)(31,38,44)(32,39,41), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,31)(14,32)(15,29)(16,30)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,43)(2,42)(3,41)(4,44)(5,32)(6,31)(7,30)(8,29)(9,33)(10,36)(11,35)(12,34)(13,28)(14,27)(15,26)(16,25)(17,39)(18,38)(19,37)(20,40)(21,47)(22,46)(23,45)(24,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,4)(6,8)(10,12)(13,29)(14,32)(15,31)(16,30)(18,20)(22,24)(26,28)(33,41)(34,44)(35,43)(36,42)(37,45)(38,48)(39,47)(40,46), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,29)(14,30)(15,31)(16,32)(17,21)(18,22)(19,23)(20,24)(33,43)(34,44)(35,41)(36,42)(37,47)(38,48)(39,45)(40,46)>;

G:=Group( (1,7,19)(2,8,20)(3,5,17)(4,6,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,42)(30,37,43)(31,38,44)(32,39,41), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,31)(14,32)(15,29)(16,30)(17,21)(18,22)(19,23)(20,24)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,43)(2,42)(3,41)(4,44)(5,32)(6,31)(7,30)(8,29)(9,33)(10,36)(11,35)(12,34)(13,28)(14,27)(15,26)(16,25)(17,39)(18,38)(19,37)(20,40)(21,47)(22,46)(23,45)(24,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (2,4)(6,8)(10,12)(13,29)(14,32)(15,31)(16,30)(18,20)(22,24)(26,28)(33,41)(34,44)(35,43)(36,42)(37,45)(38,48)(39,47)(40,46), (1,11)(2,12)(3,9)(4,10)(5,27)(6,28)(7,25)(8,26)(13,29)(14,30)(15,31)(16,32)(17,21)(18,22)(19,23)(20,24)(33,43)(34,44)(35,41)(36,42)(37,47)(38,48)(39,45)(40,46) );

G=PermutationGroup([[(1,7,19),(2,8,20),(3,5,17),(4,6,18),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,46,36),(14,47,33),(15,48,34),(16,45,35),(29,40,42),(30,37,43),(31,38,44),(32,39,41)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,11),(2,12),(3,9),(4,10),(5,27),(6,28),(7,25),(8,26),(13,31),(14,32),(15,29),(16,30),(17,21),(18,22),(19,23),(20,24),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,43),(2,42),(3,41),(4,44),(5,32),(6,31),(7,30),(8,29),(9,33),(10,36),(11,35),(12,34),(13,28),(14,27),(15,26),(16,25),(17,39),(18,38),(19,37),(20,40),(21,47),(22,46),(23,45),(24,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(2,4),(6,8),(10,12),(13,29),(14,32),(15,31),(16,30),(18,20),(22,24),(26,28),(33,41),(34,44),(35,43),(36,42),(37,45),(38,48),(39,47),(40,46)], [(1,11),(2,12),(3,9),(4,10),(5,27),(6,28),(7,25),(8,26),(13,29),(14,30),(15,31),(16,32),(17,21),(18,22),(19,23),(20,24),(33,43),(34,44),(35,41),(36,42),(37,47),(38,48),(39,45),(40,46)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F···2K3A3B4A4B4C4D4E···4J6A···6F6G6H6I6J6K···6V12A···12H12I···12T
order1222222···23344444···46···666666···612···1212···12
size1111224···41122224···41···122224···42···24···4

66 irreducible representations

dim11111111111111112244
type++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6D4C3×D42+ 1+4C3×2+ 1+4
kernelC3×C22.29C24C3×C42⋊C2C3×C22≀C2C3×C4⋊D4C3×C4.4D4C3×C41D4D4×C2×C6C6×C4○D4C22.29C24C42⋊C2C22≀C2C4⋊D4C4.4D4C41D4C22×D4C2×C4○D4C2×C12C2×C4C6C2
# reps11442211228844224824

Matrix representation of C3×C22.29C24 in GL6(𝔽13)

100000
010000
003000
000300
000030
000003
,
100000
010000
0012000
0001200
0000120
0000012
,
1200000
0120000
001000
000100
000010
000001
,
010000
100000
000010
000001
001000
000100
,
100000
010000
000100
0012000
0000012
000010
,
100000
0120000
001000
0001200
000010
0000012
,
100000
010000
001000
000100
0000120
0000012

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C3×C22.29C24 in GAP, Magma, Sage, TeX

C_3\times C_2^2._{29}C_2^4
% in TeX

G:=Group("C3xC2^2.29C2^4");
// GroupNames label

G:=SmallGroup(192,1424);
// by ID

G=gap.SmallGroup(192,1424);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,344,2102,555,1571]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=f^2=g^2=1,e^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽